INTRODUCTORY MATHEMATICAL ANALYSIS

FOR BUSINESS, ECONOMICS, AND THE LIFE AND SOCIAL SCIENCES

INTRODUCTORY MATHEMATICAL ERNEST F. HAEUSSLER JR. The Pennsylvania State University
 RICHARD S. PAUL
 The Pennsylvania State University
 RICHARD J. WOOD
 Dalhousie University

 ANALYSIS

 ANALYSIS
 FOR BUSINESS, ECONOMICS, AND THE LIFE AND SOCIAL SCIENCES

Please contact https://support.pearson.com/getsupport/s/contactsupport with any queries on this content.
Cover Image: Africa Studio / Shutterstock
Acknowledgments of third-party content appear on the appropriate page within the text.
Pearson Education Limited
KAO Two
KAO Park
Hockham Way
Harlow
Essex
CM17 9SR
United Kingdom
and Associated Companies throughout the world
Visit us on the World Wide Web at: www.pearsonglobaleditions.com
© Pearson Education Limited 2022
The rights of Ernest F. Haeussler, Jr., Richard S. Paul, and Richard J. Wood, to be identified as the authors of this work, have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the Canadian edition, entitled Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences, 14th Edition, ISBN 978-0-13-414110-7 by Ernest F. Haeussler, Jr., Richard S. Paul, and Richard J. Wood, published by Pearson Education © 2019.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions/.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide access to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this eBook at any time.

ISBN 10: 1-292-41302-6
ISBN 13: 978-1-292-41302-0
eBook ISBN 13: 978-1-292-41309-9
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

For Bronwen

This page is intentionally left blank

Contents

Preface 9
PART I COLLEGE ALGEBRA
CHAPTER 0 Review of Algebra 17
0.1 Sets of Real Numbers 18
0.2 Some Properties of Real Numbers 19
0.3 Exponents and Radicals 26
0.4 Operations with Algebraic Expressions 31
0.5 Factoring 36
0.6 Fractions 38
0.7 Equations, in Particular Linear Equations 44
0.8 Quadratic Equations 55
Chapter 0 Review 61
CHAPTER 1 Applications and More Algebra 63
1.1 Applications of Equations 64
1.2 Linear Inequalities 71
1.3 Applications of Inequalities 75
1.4 Absolute Value 78
1.5 Summation Notation 82
1.6 Sequences 86
Chapter 1 Review 96
CHAPTER 2 Functions and Graphs 99
2.1 Functions 100
2.2 Special Functions 107
2.3 Combinations of Functions 112
2.4 Inverse Functions 117
2.5 Graphs in Rectangular Coordinates 120
2.6 Symmetry 129
2.7 Translations and Reflections 134
2.8 Functions of Several Variables 136
Chapter 2 Review 144
CHAPTER 3 Lines, Parabolas, and Systems 147
3.1 Lines 148
3.2 Applications and Linear Functions 155
3.3 Quadratic Functions 161
3.4 Systems of Linear Equations 168
3.5 Nonlinear Systems 178
3.6 Applications of Systems of Equations 180
Chapter 3 Review 188
CHAPTER 4 Exponential and Logarithmic Functions 191
4.1 Exponential Functions 192
4.2 Logarithmic Functions 204
4.3 Properties of Logarithms 210
4.4 Logarithmic and Exponential Equations 216
Chapter 4 Review 220
PART II FINITE MATHEMATICS
CHAPTER 5 Mathematics of Finance 224
5.1 Compound Interest 225
5.2 Present Value 230
5.3 Interest Compounded Continuously 234
5.4 Annuities 238
5.5 Amortization of Loans 246
5.6 Perpetuities 250
Chapter 5 Review 253
CHAPTER 6 Matrix Algebra 256
6.1 Matrices 257
6.2 Matrix Addition and Scalar Multiplication 262
6.3 Matrix Multiplication 269
6.4 Solving Systems by Reducing Matrices 280
6.5 Solving Systems by Reducing Matrices (Continued) 290
6.6 Inverses 295
6.7 Leontief's Input-Output Analysis 302
Chapter 6 Review 308
CHAPTER 7 Linear Programming 310
7.1 Linear Inequalities in Two Variables 311
7.2 Linear Programming 315
7.3 The Simplex Method 322
7.4 Artificial Variables 336
7.5 Minimization 346
7.6 The Dual 351
Chapter 7 Review 360
CHAPTER 8 Introduction to Probability and Statistics 364
8.1 Basic Counting Principle and Permutations 365
8.2 Combinations and Other Counting Principles 371
8.3 Sample Spaces and Events 383
8.4 Probability 390
8.5 Conditional Probability and Stochastic Processes 404
8.6 Independent Events 417
8.7 Bayes' Formula 427
Chapter 8 Review 435
CHAPTER 9 Additional Topics in Probability 440
9.1 Discrete Random Variables and Expected Value 441
9.2 The Binomial Distribution 448
9.3 Markov Chains 453
Chapter 9 Review 463
PART III CALCULUS
CHAPTER 10 Limits and Continuity 466
10.1 Limits 467
10.2 Limits (Continued) 477
10.3 Continuity 485
10.4 Continuity Applied to Inequalities 490
Chapter 10 Review 495
CHAPTER 11 Differentiation 498
11.1 The Derivative 499
11.2 Rules for Differentiation 507
11.3 The Derivative as a Rate of Change 515
11.4 The Product Rule and the Quotient Rule 525
11.5 The Chain Rule 535
Chapter 11 Review 543
CHAPTER 12 Additional Differentiation Topics 547
12.1 Derivatives of Logarithmic Functions 548
12.2 Derivatives of Exponential Functions 553
12.3 Elasticity of Demand 559
12.4 Implicit Differentiation 564
12.5 Logarithmic Differentiation 570
12.6 Newton's Method 574
12.7 Higher-Order Derivatives 578
Chapter 12 Review 582
CHAPTER 13 Curve Sketching 585
13.1 Relative Extrema 586
13.2 Absolute Extrema on a Closed Interval 597
13.3 Concavity 599
13.4 The Second-Derivative Test 607
13.5 Asymptotes 609
13.6 Applied Maxima and Minima 619
Chapter 13 Review 630
CHAPTER 14 Integration 635
14.1 Differentials 636
14.2 The Indefinite Integral 641
14.3 Integration with Initial Conditions 647
14.4 More Integration Formulas 651
14.5 Techniques of Integration 658
14.6 The Definite Integral 663
14.7 The Fundamental Theorem of Calculus 669
Chapter 14 Review 677
CHAPTER 15 Applications of Integration 681
15.1 Integration by Tables 682
15.2 Approximate Integration 688
15.3 Area Between Curves 694
15.4 Consumers' and Producers' Surplus 703
15.5 Average Value of a Function 706
15.6 Differential Equations 708
15.7 More Applications of Differential Equations 715
15.8 Improper Integrals 722
Chapter 15 Review 725
CHAPTER 16 Continuous Random Variables 729
16.1 Continuous Random Variables 730
16.2 The Normal Distribution 737
16.3 The Normal Approximation to the Binomial Distribution 742
Chapter 16 Review 746
CHAPTER 17 Multivariable Calculus 748
17.1 Partial Derivatives 749
17.2 Applications of Partial Derivatives 754
17.3 Higher-Order Partial Derivatives 760
17.4 Maxima and Minima for Functions of Two Variables 762
17.5 Lagrange Multipliers 770
17.6 Multiple Integrals 777
Chapter 17 Review 781
APPENDIX A Compound Interest Tables 785
APPENDIX B Table of Selected Integrals 793
APPENDIX C Areas Under the Standard Normal Curve 796
Answers to Odd-Numbered Problems AN-1
Index I-1 he fourteenth edition of Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences (IMA) continues to provide a mathematical foundation for students in a variety of fields and majors, as suggested by the title. As begun in the thirteenth edition, the book has three parts: College Algebra, Chapters 0-4; Finite Mathematics, Chapters 5-9; and Calculus, Chapters 10-17.

Schools that have two academic terms per year tend to give Business students a term devoted to Finite Mathematics and a term devoted to Calculus. For these schools we recommend Chapters 0 through 9 for the first course, starting wherever the preparation of the students allows, and Chapters 10 through 17 for the second, including as much as the students' background allows and their needs dictate.

For schools with three quarter or three semester courses per year there are a number of possible uses for this book. If their program allows three quarters of Mathematics, wellprepared Business students can start a first course on Finite Mathematics with Chapter 1 and proceed through topics of interest up to and including Chapter 9. In this scenario, a second course on Differential Calculus could start with Chapter 10 on Limits and Continuity, followed by the three "differentiation chapters", 11 through 13 inclusive. Here, Section 12.6 on Newton's Method can be omitted without loss of continuity, while some instructors may prefer to review Chapter 4 on Exponential and Logarithmic Functions prior to studying them as differentiable functions. Finally, a third course could comprise Chapters 14 through 17 on Integral Calculus with an introduction to Multivariable Calculus. Note that Chapter 16 is certainly not needed for Chapter 17 and Section 15.8 on Improper Integrals can be safely omitted if Chapter 16 is not covered.

Approach

Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences (IMA) takes a unique approach to problem solving. As has been the case in earlier editions of this book, we establish an emphasis on algebraic calculations that sets this text apart from other introductory, applied mathematics books. The process of calculating with variables builds skill in mathematical modeling and paves the way for students to use calculus. The reader will not find a "definition-theorem-proof" treatment, but there is a sustained effort to impart a genuine mathematical treatment of applied problems. In particular, our guiding philosophy leads us to include informal proofs and general calculations that shed light on how the corresponding calculations are done in applied problems. Emphasis on developing algebraic skills is extended to the exercises, of which many, even those of the drill type, are given with general rather than numerical coefficients.

We have refined the organization of our book over many editions to present the content in very manageable portions for optimal teaching and learning. Inevitably, that process tends to put "weight" on a book, and the present edition makes a very concerted effort to pare the book back somewhat, both with respect to design features-making for a cleaner approach—and content-recognizing changing pedagogical needs.

Changes for the Fourteenth Edition

We continue to make the elementary notions in the early chapters pave the way for their use in more advanced topics. For example, while discussing factoring, a topic many students find somewhat arcane, we point out that the principle " $a b=0$ implies $a=0$ or $b=0$ ", together with factoring, enables the splitting of some complicated equations into several simpler equations. We point out that percentages are just rescaled numbers via the "equation" $p \%=\frac{p}{100}$ so that, in calculus, "relative rate of change" and "percentage rate of change" are related by the "equation" $r=r \cdot 100 \%$. We think that at this time, when negative interest rates are often discussed, even if seldom implemented, it is wise to be absolutely precise about simple notions that are often taken for granted. In fact, in the

Finance, Chapter 5, we explicitly discuss negative interest rates and ask, somewhat rhetorically, why banks do not use continuous compounding (given that for a long time now continuous compounding has been able to simplify calculations in practice as well as in theory).

Whenever possible, we have tried to incorporate the extra ideas that were in the "Explore and Extend" chapter-closers into the body of the text. For example, the functions tax rate $t(i)$ and tax paid $T(i)$ of income i, are seen for what they are: everyday examples of case-defined functions. We think that in the process of learning about polynomials it is helpful to include Horner's Method for their evaluation, since with even a simple calculator at hand this makes the calculation much faster. While doing linear programming, it sometimes helps to think of lines and planes, etcetera, in terms of intercepts alone, so we include an exercise to show that if a line has (nonzero) intercepts x_{0} and y_{0} then its equation is given by

$$
\frac{x}{x_{0}}+\frac{y}{y_{0}}=1
$$

and, moreover, (for positive x_{0} and y_{0}) we ask for a geometric interpretation of the equivalent equation $y_{0} x+x_{0} y=x_{0} y_{0}$.

But, turning to our "paring" of the previous IMA, let us begin with Linear Programming. This is surely one of the most important topics in the book for Business students. We now feel that, while students should know about the possibility of Multiple Optimum Solutions and Degeneracy and Unbounded Solutions, they do not have enough time to devote an entire, albeit short, section to each of these. The remaining sections of Chapter 7 are already demanding and we now content ourselves with providing simple alerts to these possibilities that are easily seen geometrically. (The deleted sections were always tagged as "omittable".)

We think further that, in Integral Calculus, it is far more important for Applied Mathematics students to be adept at using tables to evaluate integrals than to know about Integration by Parts and Partial Fractions. In fact, these topics, of endless joy to some as recreational problems, do not seem to fit well into the general scheme of serious problem solving. It is a fact of life that an elementary function (in the technical sense) can easily fail to have an elementary antiderivative, and it seems to us that Parts does not go far enough to rescue this difficulty to warrant the considerable time it takes to master the technique. Since Partial Fractions ultimately lead to elementary antiderivatives for all rational functions, they are part of serious problem solving and a better case can be made for their inclusion in an applied textbook. However, it is vainglorious to do so without the inverse tangent function at hand and, by longstanding tacit agreement, applied calculus books do not venture into trigonometry.

After deleting the sections mentioned above, we reorganized the remaining material of the "integration chapters", 14 and 15 , to rebalance them. The first concludes with the Fundamental Theorem of Calculus while the second is more properly "applied". We think that the formerly daunting Chapter 17 has benefited from deletion of Implicit Partial Differentiation, the Chain Rule for partial differentiation, and Lines of Regression. Since Multivariable Calculus is extremely important for Applied Mathematics, we hope that this more manageable chapter will encourage instructors to include it in their syllabi.

Examples and Exercises

Most instructors and students will agree that the key to an effective textbook is in the quality and quantity of the examples and exercise sets. To that end, more than 850 examples are worked out in detail. Some of these examples include a strategy box designed to guide students through the general steps of the solution before the specific solution is obtained. (See, for example, Section 14.3 Example 4.) In addition, an abundant number of diagrams (almost 500) and exercises (more than 5000) are included. Of the exercises, approximately 20 percent have been either updated or written completely anew. In each exercise set, grouped problems are usually given in increasing order of difficulty. In most exercise sets the problems progress from the basic mechanical drill-type to more
interesting thought-provoking problems. The exercises labeled with a coloured exercise number correlate to a "Now Work Problem N" statement and example in the section.

Based on the feedback we have received from users of this text, the diversity of the applications provided in both the exercise sets and examples is truly an asset of this book. Many real applied problems with accurate data are included. Students do not need to look hard to see how the mathematics they are learning is applied to everyday or work-related situations. A great deal of effort has been put into producing a proper balance between drill-type exercises and problems requiring the integration and application of the concepts learned.

Pedagogy and Hallmark Features

■ Applications: An abundance and variety of applications for the intended audience appear throughout the book so that students see frequently how the mathematics they are learning can be used. These applications cover such diverse areas as business, economics, biology, medicine, sociology, psychology, ecology, statistics, earth science, and archaeology. Many of these applications are drawn from literature and are documented by references, sometimes from the Web. In some, the background and context are given in order to stimulate interest. However, the text is self-contained, in the sense that it assumes no prior exposure to the concepts on which the applications are based. (See, for example, Chapter 15, Section 7, Example 2.)
■ Now Work Problem N: Throughout the text we have retained the popular Now Work Problem N feature. The idea is that after a worked example, students are directed to an end-of-section problem (labeled with a colored exercise number) that reinforces the ideas of the worked example. This gives students an opportunity to practice what they have just learned. Because the majority of these keyed exercises are odd-numbered, students can immediately check their answer in the back of the book to assess their level of understanding.
■ Cautions: Cautionary warnings are presented in very much the same way an instructor would warn students in class of commonly made errors. These appear in the margin, along with other explanatory notes and emphases.

- Definitions, key concepts, and important rules and formulas: These are clearly stated and displayed as a way to make the navigation of the book that much easier for the student. (See, for example, the Definition of Derivative in Section 11.1.)
■ Review material: Each chapter has a review section that contains a list of important terms and symbols, a chapter summary, and numerous review problems. In addition, key examples are referenced along with each group of important terms and symbols.
■ Inequalities and slack variables: In Section 1.2, when inequalities are introduced we point out that $a \leq b$ is equivalent to "there exists a non-negative number, s, such that $a+s=b "$. The idea is not deep but the pedagogical point is that slack variables, key to implementing the simplex algorithm in Chapter 7, should be familiar and not distract from the rather technical material in linear programming.
- Absolute value: It is common to note that $|a-b|$ provides the distance from a to b. In Example 4 e of Section 1.4 we point out that " x is less than σ units from μ " translates as $|x-\mu|<\sigma$. In Section 1.4 this is but an exercise with the notation, as it should be, but the point here is that later (in Chapter 9) μ will be the mean and σ the standard deviation of a random variable. Again we have separated, in advance, a simple idea from a more advanced one. Of course, Problem 12 of Problems 1.4, which asks the student to set up $|f(x)-L|<\epsilon$, has a similar agenda to Chapter 10 on limits.
- Early treatment of summation notation: This topic is necessary for study of the definite integral in Chapter 14, but it is useful long before that. Since it is a notation that is new to most students at this level, but no more than a notation, we get it out of the way in Chapter 1. By using it when convenient, before coverage of the definite integral, it is not a distraction from that challenging concept.
- Section 1.6 on sequences: This section provides several pedagogical advantages. The very definition is stated in a fashion that paves the way for the more important and more basic definition of function in Chapter 2. In summing the terms of a sequence we are able to practice the use of summation notation introduced in the preceding section. The most obvious benefit though is that "sequences" allows us a better organization in the annuities section of Chapter 5. Both the present and the future values of an annuity are obtained by summing (finite) geometric sequences. Later in the text, sequences arise in the definition of the number e in Chapter 4, in Markov chains in Chapter 9, and in Newton's method in Chapter 12, so that a helpful unifying reference is obtained.
- Sum of an infinite sequence: In the course of summing the terms of a finite sequence, it is natural to raise the possibility of summing the terms of an infinite sequence. This is a nonthreatening environment in which to provide a first foray into the world of limits. We simply explain how certain infinite geometric sequences have well-defined sums and phrase the results in a way that creates a toehold for the introduction of limits in Chapter 10. These particular infinite sums enable us to introduce the idea of a perpetuity, first informally in the sequence section, and then again in more detail in a separate section in Chapter 5.
■ Section 2.8, Functions of Several Variables: The introduction to functions of several variables appears in Chapter 2 because it is a topic that should appear long before Calculus. Once we have done some calculus there are particular ways to use calculus in the study of functions of several variables, but these aspects should not be confused with the basics that we use throughout the book. For example, "a-sub-n-angle-r" and "s-sub-n-angle-r" studied in the Mathematics of Finance, Chapter 5, are perfectly good functions of two variables, and Linear Programming seeks to optimize linear functions of several variables subject to linear constraints.
- Leontief's input-output analysis in Section 6.7: In this section we have separated various aspects of the total problem. We begin by describing what we call the Leontief matrix A as an encoding of the input and output relationships between sectors of an economy. Since this matrix can often be assumed to be constant for a substantial period of time, we begin by assuming that A is a given. The simpler problem is then to determine the production, X, which is required to meet an external demand, D, for an economy whose Leontief matrix is A. We provide a careful account of this as the solution of $(I-A) X=D$. Since A can be assumed to be fixed while various demands, D, are investigated, there is some justification to compute $(I-A)^{-1}$ so that we have $X=(I-A)^{-1} D$. However, use of a matrix inverse should not be considered an essential part of the solution. Finally, we explain how the Leontief matrix can be found from a table of data that might be available to a planner.
- Birthday probability in Section 8.4: This is a treatment of the classic problem of determining the probability that at least 2 of n people have their birthday on the same day. While this problem is given as an example in many texts, the recursive formula that we give for calculating the probability as a function of n is not a common feature. It is reasonable to include it in this book because recursively defined sequences appear explicitly in Section 1.6.
- Markov Chains: We noticed that considerable simplification of the problem of finding steady state vectors is obtained by writing state vectors as columns rather than rows. This does necessitate that a transition matrix $\mathbf{T}=\left[t_{i j}\right]$ have $t_{i j}=$ "probability that next state is i given that current state is j " but avoids several artificial transpositions.
- Sign Charts for a function in Chapter 10: The sign charts that we introduced in the 12th edition now make their appearance in Chapter 10. Our point is that these charts can be made for any real-valued function of a real variable and their help in graphing a function begins prior to the introduction of derivatives. Of course we continue to exploit their use in Chapter 13 "Curve Sketching" where, for each function f, we advocate making a sign chart for each of f, f^{\prime}, and $f^{\prime \prime}$, interpreted for f itself. When this is possible, the graph of the function becomes almost self-evident. We freely acknowledge that this is a blackboard technique used by many instructors, but it appears too rarely in textbooks.

Supplements

- MyLab Math Online Course (access code required) Built around Pearson's bestselling content, MyLab ${ }^{\text {TM }}$ Math, is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. MyLab Math can be successfully implemented in any classroom environment-lab-based, hybrid, fully online, or traditional. By addressing instructor and student needs, MyLab Math improves student learning. Used by more than 37 million students worldwide, MyLab Math delivers consistent, measurable gains in student learning outcomes, retention and subsequent course success. Visit www.mymathlab.com/results to learn more.

These instructor supplements are available for download from a password-protected section of Pearson Global Edition's online catalogue (http://www.pearsonglobal editions.com/). Navigate to your book's catalogue page to view a list of those supplements that are available. Speak to your local Pearson sales representative for details and access.

- Instructor's Solution Manual has worked solutions to all problems, including those in the Apply It exercises. It is downloadable from a password-protected section of Pearson Global Edition's online catalogue (http://www.pearsonglobaleditions.com/).
- Computerized Test Bank. Pearson's computerized test banks allow instructors to filter and select questions to create quizzes, tests, or homework. Instructors can revise questions or add their own, and may be able to choose print or online options. These questions are also available in Microsoft Word format.
- PowerPoint ${ }^{\circledR}$ Lecture Slides. The chapter-by-chapter PowerPoint lecture slides include key concept, equations, and worked examples from the text.
- Pearson eText. The Pearson eText gives students access to their textbook anytime, anywhere. In addition to note taking, highlighting, and bookmarking, the Pearson eText offers interactive and sharing features. Instructors can share their comments or highlights, and students can add their own, creating a tight community of learners within the class.

Acknowledgments

We express our appreciation to the following colleagues who contributed comments and suggestions that were valuable to us in the evolution of this text. (Professors marked with an asterisk reviewed the fourteenth edition.)
E. Adibi, Chapman University
R. M. Alliston, Pennsylvania State University
R. A. Alo, University of Houston
K. T. Andrews, Oakland University
M. N. de Arce, University of Puerto Rico
E. Barbut, University of Idaho
G. R. Bates, Western Illinois University
*S. Beck, Navarro College
D. E. Bennett, Murray State University
C. Bernett, Harper College
A. Bishop, Western Illinois University
P. Blau, Shawnee State University
R. Blute, University of Ottawa
S. A. Book, California State University
A. Brink, St. Cloud State University
R. Brown, York University
R. W. Brown, University of Alaska
S. D. Bulman-Fleming, Wilfrid Laurier University
D. Calvetti, National College
D. Cameron, University of Akron
K. S. Chung, Kapiolani Community College
D. N. Clark, University of Georgia
E. L. Cohen, University of Ottawa
J. Dawson, Pennsylvania State University
A. Dollins, Pennsylvania State University
T. J. Duda, Columbus State Community College
G. A. Earles, St. Cloud State University
B. H. Edwards, University of Florida
J. R. Elliott, Wilfrid Laurier University
J. Fitzpatrick, University of Texas at El Paso
M. J. Flynn, Rhode Island Junior College
G. J. Fuentes, University of Maine
L. Gerber, St. John's University
T. G. Goedde, The University of Findlay
S. K. Goel, Valdosta State University
G. Goff, Oklahoma State University
J. Goldman, DePaul University
E. Greenwood, Tarrant County College, Northwest Campus
J. T. Gresser, Bowling Green State University
L. Griff, Pennsylvania State University
R. Grinnell, University of Toronto at Scarborough
F. H. Hall, Pennsylvania State University
V. E. Hanks, Western Kentucky University

* T. Harriott, Mount Saint Vincent University
R. C. Heitmann, The University of Texas at Austin
J. N. Henry, California State University
W. U. Hodgson, West Chester State College
* J. Hooper, Acadia University
B. C. Horne, Jr., Virginia Polytechnic Institute and State University
J. Hradnansky, Pennsylvania State University
P. Huneke, The Ohio State University
C. Hurd, Pennsylvania State University
J. A. Jiminez, Pennsylvania State University
*T. H. Jones, Bishop's University
W. C. Jones, Western Kentucky University
R. M. King, Gettysburg College
M. M. Kostreva, University of Maine
G. A. Kraus, Gannon University
J. Kucera, Washington State University
M. R. Latina, Rhode Island Junior College
L. N. Laughlin, University of Alaska, Fairbanks
P. Lockwood-Cooke, West Texas A \& M University
J. F. Longman, Villanova University
*F. MacWilliam, Algoma University I. Marshak, Loyola University of Chicago
D. Mason, Elmhurst College
*B. Matheson, University of Waterloo
F. B. Mayer, Mt. San Antonio College
P. McDougle, University of Miami
F. Miles, California State University
E. Mohnike, Mt. San Antonio College
C. Monk, University of Richmond
R. A. Moreland, Texas Tech University
J. G. Morris, University of Wisconsin-Madison
J. C. Moss, Paducah Community College
D. Mullin, Pennsylvania State University
E. Nelson, Pennsylvania State University
S. A. Nett, Western Illinois University
R. H. Oehmke, University of Iowa
Y. Y. Oh, Pennsylvania State University
J. U. Overall, University of La Verne
*K. Pace, Tarrant County College
A. Panayides, William Patterson University
D. Parker, University of Pacific
N. B. Patterson, Pennsylvania State University
V. Pedwaydon, Lawrence Technical University
E. Pemberton, Wilfrid Laurier University
M. Perkel, Wright State University
D. B. Priest, Harding College
J. R. Provencio, University of Texas
L. R. Pulsinelli, Western Kentucky University
M. Racine, University of Ottawa
* B. Reed, Navarro College
N. M. Rice, Queen's University
A. Santiago, University of Puerto Rico
J. R. Schaefer, University of Wisconsin-Milwaukee
S. Sehgal, The Ohio State University
W. H. Seybold, Jr., West Chester State College
* Y. Shibuya, San Francisco State University
G. Shilling, The University of Texas at Arlington
S. Singh, Pennsylvania State University
L. Small, Los Angeles Pierce College

E. Smet, Huron College
J. Stein, California State University, Long Beach
M. Stoll, University of South Carolina
T. S. Sullivan, Southern Illinois University Edwardsville
E. A. Terry, St. Joseph's University
A. Tierman, Saginaw Valley State University
B. Toole, University of Maine
J. W. Toole, University of Maine
*M. Torres, Athabasca University
D. H. Trahan, Naval Postgraduate School
J. P. Tull, The Ohio State University
L. O. Vaughan, Jr., University of Alabama in Birmingham
L. A. Vercoe, Pennsylvania State University
M. Vuilleumier, The Ohio State University
B. K. Waits, The Ohio State University
A. Walton, Virginia Polytechnic Institute and State University
H. Walum, The Ohio State University
E. T. H. Wang, Wilfrid Laurier University
A. J. Weidner, Pennsylvania State University
L. Weiss, Pennsylvania State University
N. A. Weigmann, California State University
S. K. Wong, Ohio State University
G. Woods, The Ohio State University
C. R. B. Wright, University of Oregon
C. Wu, University of Wisconsin-Milwaukee
B. F. Wyman, The Ohio State University
D. Zhang, Washington State University

Some exercises are taken from problem supplements used by students at Wilfrid Laurier University. We wish to extend special thanks to the Department of Mathematics of Wilfrid Laurier University for granting Prentice Hall permission to use and publish this material, and also to Prentice Hall, who in turn allowed us to make use of this material.

We again express our sincere gratitude to the faculty and course coordinators of The Ohio State University and Columbus State University who took a keen interest in this and other editions, offering a number of invaluable suggestions.

Special thanks are due to MPS North America, LLC. for their careful work on the solutions manuals. Their work was extraordinarily detailed and helpful to us. We also appreciate the care that they took in checking the text and exercises for accuracy.

Ernest F. Haeussler, Jr.
Richard S. Paul
Richard J. Wood

Global Edition Acknowledgments

Pearson would like to thank Alicia Tan Yiing Fei, Taylor's University Malaysia, for developing the content for this Global Edition. Pearson would also like to thank Rafia Afroz, International Islamic University Malaysia, Ahmad Fadly Nurullah bin Rasedee, Universiti Sains Islam Malaysia; and Nor Yasmin Mhd Bani, Universiti Putra Malaysia, for sharing suggestions that were valuable to us in developing the content for the Global Edition.

This page is intentionally left blank

0

0.1 Sets of Real Numbers
0.2 Some Properties of Real Numbers
0.3 Exponents and Radicals
0.4 Operations with Algebraic Expressions
0.5 Factoring
0.6 Fractions
0.7 Equations, in Particular Linear Equations
\subsection*{0.8 Quadratic Equations Chapter 0 Review}

Review of Algebra

Lesley Griffith worked for a yacht supply company in Antibes, France. Often, she needed to examine receipts in which only the total paid was reported and then determine the amount of the total which was French "value-added tax".
It is known as TVA for "Taxe à la Value Ajouté". The French TVA rate was 19.6% (but in January of 2014 it increased to 20\%). A lot of Lesley's business came from Italian suppliers and purchasers, so she also had to deal with the similar problem of receipts containing Italian sales tax at 18% (now 22%).

A problem of this kind demands a formula, so that the user can just plug in a tax rate like 19.6% or 22% to suit a particular place and time, but many people are able to work through a particular case of the problem, using specified numbers, without knowing the formula. Thus, if Lesley had a 200-Euro French receipt, she might have reasoned as follows: If the item cost 100 Euros before tax, then the receipt total would be for 119.6 Euros with tax of 19.6, so tax in a receipt total of 200 is to 200 as 19.6 is to 119.6. Stated mathematically,

$$
\frac{\operatorname{tax} \text { in } 200}{200}=\frac{19.6}{119.6} \approx 0.164=16.4 \%
$$

If her reasoning is correct then the amount of TVA in a 200-Euro receipt is about 16.4% of 200 Euros, which is 32.8 Euros. In fact, many people will now guess that

$$
\operatorname{tax} \text { in } R=R\left(\frac{p}{100+p}\right)
$$

gives the tax in a receipt R, when the tax rate is $p \%$. Thus, if Lesley felt confident about her deduction, she could have multiplied her Italian receipts by $\frac{18}{118}$ to determine the tax they contained.

Of course, most people do not remember formulas for very long and are uncomfortable basing a monetary calculation on an assumption such as the one we italicized above. There are lots of relationships that are more complicated than simple proportionality! The purpose of this chapter is to review the algebra necessary for you to construct your own formulas, with confidence, as needed. In particular, we will derive Lesley's formula from principles with which everybody is familiar. This usage of algebra will appear throughout the book, in the course of making general calculations with variable quantities.

In this chapter we will review real numbers and algebraic expressions and the basic operations on them. The chapter is designed to provide a brief review of some terms and methods of symbolic calculation. Probably, you have seen most of this material before. However, because these topics are important in handling the mathematics that comes later, an immediate second exposure to them may be beneficial. Devote whatever time is necessary to the sections in which you need review.

Objective

To become familiar with sets, in particular sets of real numbers, and the real-number line.

The reason for $q \neq 0$ is that we cannot divide by zero.

Every integer is a rational number.

Every rational number is a real number.

The set of real numbers consists of all decimal numbers.

0.1 Sets of Real Numbers

A set is a collection of objects. For example, we can speak of the set of even numbers between 5 and 11 , namely, 6,8 , and 10 . An object in a set is called an element of that set. If this sounds a little circular, don't worry. The words set and element are like line and point in geometry. We cannot define them in more primitive terms. It is only with practice in using them that we come to understand their meaning. The situation is also rather like the way in which a child learns a first language. Without knowing any words, a child infers the meaning of a few very simple words by watching and listening to a parent and ultimately uses these very few words to build a working vocabulary. None of us needs to understand the mechanics of this process in order to learn how to speak. In the same way, it is possible to learn practical mathematics without becoming embroiled in the issue of undefined primitive terms.

One way to specify a set is by listing its elements, in any order, inside braces. For example, the previous set is $\{6,8,10\}$, which we could denote by a letter such as A, allowing us to write $A=\{6,8,10\}$. Note that $\{8,10,6\}$ also denotes the same set, as does $\{6,8,10,10\}$. A set is determined by its elements, and neither rearrangements nor repetitions in a listing affect the set. A set A is said to be a subset of a set B if and only if every element of A is also an element of B. For example, if $A=\{6,8,10\}$ and $B=\{6,8,10,12\}$, then A is a subset of B but B is not a subset of A. There is exactly one set which contains no elements. It is called the empty set and is denoted by \emptyset.

Certain sets of numbers have special names. The numbers $1,2,3$, and so on form the set of positive integers:

$$
\text { set of positive integers }=\{1,2,3, \ldots\}
$$

The three dots are an informal way of saying that the listing of elements is unending and the reader is expected to generate as many elements as needed from the pattern.

The positive integers together with 0 and the negative integers $-1,-2,-3, \ldots$, form the set of integers:

$$
\text { set of integers }=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

The set of rational numbers consists of numbers, such as $\frac{1}{2}$ and $\frac{5}{3}$, that can be written as a quotient of two integers. That is, a rational number is a number that can be written as $\frac{p}{q}$, where p and q are integers and $q \neq 0$. (The symbol " \neq " is read "is not equal to.") For example, the numbers $\frac{19}{20}, \frac{-2}{7}$, and $\frac{-6}{-2}$ are rational. We remark that $\frac{2}{4}, \frac{1}{2}$, $\frac{3}{6}, \frac{-4}{-8}, 0.5$, and 50% all represent the same rational number. The integer 2 is rational, since $2=\frac{2}{1}$. In fact, every integer is rational.

All rational numbers can be represented by decimal numbers that terminate, such as $\frac{3}{4}=0.75$ and $\frac{3}{2}=1.5$, or by nonterminating, repeating decimal numbers (composed of a group of digits that repeats without end), such as $\frac{2}{3}=0.666 \ldots, \frac{-4}{11}=-0.3636 \ldots$, and $\frac{2}{15}=0.1333 \ldots$ Numbers represented by nonterminating, nonrepeating decimals are called irrational numbers. An irrational number cannot be written as an integer divided by an integer. The numbers π (pi) and $\sqrt{2}$ are examples of irrational numbers. Together, the rational numbers and the irrational numbers form the set of real numbers.

Real numbers can be represented by points on a line. First we choose a point on the line to represent zero. This point is called the origin. (See Figure 0.1.) Then a standard measure of distance, called a unit distance, is chosen and is successively marked off both to the right and to the left of the origin. With each point on the line we associate a directed distance, which depends on the position of the point with respect to the origin.

Some Points and Their Coordinates

FIGURE 0.1 The real-number line.

Positions to the right of the origin are considered positive $(+)$ and positions to the left are negative $(-)$. For example, with the point $\frac{1}{2}$ unit to the right of the origin there corresponds the number $\frac{1}{2}$, which is called the coordinate of that point. Similarly, the coordinate of the point 1.5 units to the left of the origin is -1.5 . In Figure 0.1, the coordinates of some points are marked. The arrowhead indicates that the direction to the right along the line is considered the positive direction.

To each point on the line there corresponds a unique real number, and to each real number there corresponds a unique point on the line. There is a one-to-one correspondence between points on the line and real numbers. We call such a line, with coordinates marked, a real-number line. We feel free to treat real numbers as points on a real-number line and vice versa.

EXAMPLE 1 Identifying Kinds of Real Numbers

Is it true that $0.151515 \ldots$ is an irrational number?
Solution: The dots in $0.151515 \ldots$ are understood to convey repetition of the digit string " 15 ". Irrational numbers were defined to be real numbers that are represented by a nonterminating, nonrepeating decimal, so $0.151515 \ldots$ is not irrational. It is therefore a rational number. It is not immediately clear how to represent $0.151515 \ldots$ as a quotient of integers. In Chapter 1 we will learn how to show that $0.151515 \ldots=\frac{5}{33}$. You can check that this is plausible by entering $5 \div 33$ on a calculator, but you should also think about why the calculator exercise does not prove that $0.151515 \ldots=\frac{5}{33}$.

Now Work Problem $7 \triangleleft$

PROBLEMS 0.1

In Problems 1-12, determine the truth of each statement. If the statement is false, give a reason why that is so.

1. $\sqrt{-13}$ is an integer.
2. $\frac{-2}{7}$ is rational.
3. -3 is a positive integer.
4. 0 is not rational.
5. $\sqrt{3}$ is rational.
6. $\frac{-1}{0}$ is a rational number.
7. $\sqrt{25}$ is not a positive integer.
8. $\sqrt{2}$ is a real number.
9. $\frac{0}{0}$ is rational.
10. π is a positive integer.
11. 0 is to the right of $-\sqrt{2}$ on the real-number line.
12. Every integer is positive or negative.
13. Every terminating decimal number can be regarded as a repeating decimal number.
14. $\sqrt{-1}$ is a real number.

Objective

To name, illustrate, and relate properties of the real numbers and their operations.

0.2 Some Properties of Real Numbers

We now state a few important properties of the real numbers. Let a, b, and c be real numbers.

1. The Transitive Property of Equality

$$
\text { If } a=b \text { and } b=c, \text { then } a=c
$$

Thus, two numbers that are both equal to a third number are equal to each other. For example, if $x=y$ and $y=7$, then $x=7$.

2. The Closure Properties of Addition and Multiplication

For all real numbers a and b, there are unique real numbers $a+b$ and $a b$.

This means that any two numbers can be added and multiplied, and the result in each case is a real number.
3. The Commutative Properties of Addition and Multiplication

$$
a+b=b+a \quad \text { and } \quad a b=b a
$$

This means that two numbers can be added or multiplied in any order. For example, $3+4=4+3$ and $(7)(-4)=(-4)(7)$.

4. The Associative Properties of Addition and Multiplication

$$
a+(b+c)=(a+b)+c \quad \text { and } \quad a(b c)=(a b) c
$$

This means that, for both addition and multiplication, numbers can be grouped in any order. For example, $2+(3+4)=(2+3)+4$; in both cases, the sum is 9 . Similarly, $2 x+(x+y)=(2 x+x)+y$, and observe that the right side more obviously simplifies to $3 x+y$ than does the left side. Also, $\left(6 \cdot \frac{1}{3}\right) \cdot 5=6\left(\frac{1}{3} \cdot 5\right)$, and here the left side obviously reduces to 10 , so the right side does too.

5. The Identity Properties

There are unique real numbers denoted 0 and 1 such that, for each real number a,

$$
0+a=a \quad \text { and } \quad 1 a=a
$$

6. The Inverse Properties

For each real number a, there is a unique real number denoted $-a$ such that

$$
a+(-a)=0
$$

The number $-a$ is called the negative of a.

For example, since $6+(-6)=0$, the negative of 6 is -6 . The negative of a number is not necessarily a negative number. For example, the negative of -6 is 6 , since $(-6)+(6)=0$. That is, the negative of -6 is 6 , so we can write $-(-6)=6$.

For each real number a, except 0 , there is a unique real number denoted a^{-1} such that

$$
a \cdot a^{-1}=1
$$

The number a^{-1} is called the reciprocal of a.
Thus, all numbers except 0 have a reciprocal. Recall that a^{-1} can be written $\frac{1}{a}$. For example, the reciprocal of 3 is $\frac{1}{3}$, since $3\left(\frac{1}{3}\right)=1$. Hence, $\frac{1}{3}$ is the reciprocal of 3 . The reciprocal of $\frac{1}{3}$ is 3 , since $\left(\frac{1}{3}\right)(3)=1$. The reciprocal of 0 is not defined.

7. The Distributive Properties

$$
\begin{gathered}
a(b+c)=a b+a c \quad \text { and }(b+c) a=b a+c a \\
0 \cdot a=0=a \cdot 0
\end{gathered}
$$

For example, although $2(3+4)=2(7)=14$, we can also write

$$
2(3+4)=2(3)+2(4)=6+8=14
$$

Similarly,

$$
(2+3)(4)=2(4)+3(4)=8+12=20
$$

and

$$
x(z+4)=x(z)+x(4)=x z+4 x
$$

The distributive property can be extended to the form

$$
a(b+c+d)=a b+a c+a d
$$

In fact, it can be extended to sums involving any number of terms.
Subtraction is defined in terms of addition:

$$
a-b \quad \text { means } a+(-b)
$$

where $-b$ is the negative of b. Thus, $6-8$ means $6+(-8)$.
In a similar way, we define division in terms of multiplication. If $b \neq 0$, then

$$
a \div b \quad \text { means } \quad a\left(b^{-1}\right)
$$

Usually, we write either $\frac{a}{b}$ or a / b for $a \div b$. Since $b^{-1}=\frac{1}{b}$,

$$
\frac{a}{b}=a\left(b^{-1}\right)=a\left(\frac{1}{b}\right)
$$

Thus, $\frac{3}{5}$ means 3 times $\frac{1}{5}$, where $\frac{1}{5}$ is the reciprocal of 5 . Sometimes we refer to $\frac{a}{b}$ as the ratio of a to b. We remark that since 0 does not have a reciprocal, division by $\mathbf{0}$ is not defined.

The following examples show some manipulations involving the preceding properties.

EXAMPLE 1 Applying Properties of Real Numbers

a. $x(y-3 z+2 w)=(y-3 z+2 w) x$, by the commutative property of multiplication.
b. By the associative property of multiplication, $3(4 \cdot 5)=(3 \cdot 4) 5$. Thus, the result of multiplying 3 by the product of 4 and 5 is the same as the result of multiplying the product of 3 and 4 by 5 . In either case, the result is 60 .
c. Show that $a(b \cdot c) \neq(a b) \cdot(a c)$

Solution: To show the negation of a general statement, it suffices to provide a counterexample. Here, taking $a=2$ and $b=1=c$, we see that that $a(b \cdot c)=2$ while $(a b) \cdot(a c)=4$.

Now Work Problem $9 \triangleleft$

EXAMPLE 2 Applying Properties of Real Numbers

a. Show that $2-\sqrt{2}=-\sqrt{2}+2$.

Solution: By the definition of subtraction, $2-\sqrt{2}=2+(-\sqrt{2})$. However, by the commutative property of addition, $2+(-\sqrt{2})=-\sqrt{2}+2$. Hence, by the transitive property of equality, $2-\sqrt{2}=-\sqrt{2}+2$. Similarly, it is clear that, for any a and b, we have

$$
a-b=-b+a
$$

b. Show that $(8+x)-y=8+(x-y)$.

Solution: Beginning with the left side, we have

$$
\begin{aligned}
(8+x)-y & =(8+x)+(-y) & & \text { definition of subtraction } \\
& =8+(x+(-y)) & & \text { associative property } \\
& =8+(x-y) & & \text { definition of subtraction }
\end{aligned}
$$

Hence, by the transitive property of equality,

$$
(8+x)-y=8+(x-y)
$$

Similarly, for all a, b, and c, we have

$$
(a+b)-c=a+(b-c)
$$

c. Show that $3(4 x+2 y+8)=12 x+6 y+24$.

Solution: By the distributive property,

$$
3(4 x+2 y+8)=3(4 x)+3(2 y)+3(8)
$$

But by the associative property of multiplication,

$$
3(4 x)=(3 \cdot 4) x=12 x \quad \text { and similarly } \quad 3(2 y)=6 y
$$

Thus, $3(4 x+2 y+8)=12 x+6 y+24$

EXAMPLE 3 Applying Properties of Real Numbers

a. Show that $\frac{a b}{c}=a\left(\frac{b}{c}\right)$, for $c \neq 0$.

Solution: The restriction is necessary. Neither side of the equation is defined if $c=0$. By the definition of division,

$$
\frac{a b}{c}=(a b) \cdot \frac{1}{c} \text { for } c \neq 0
$$

But by the associative property,

$$
(a b) \cdot \frac{1}{c}=a\left(b \cdot \frac{1}{c}\right)
$$

However, by the definition of division, $b \cdot \frac{1}{c}=\frac{b}{c}$. Thus,

$$
\frac{a b}{c}=a\left(\frac{b}{c}\right)
$$

We can also show that $\frac{a b}{c}=\left(\frac{a}{c}\right) b$.
b. Show that $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$ for $c \neq 0$.

Solution: (Again the restriction is necessary but we won't always bother to say so.) By the definition of division and the distributive property,

$$
\frac{a+b}{c}=(a+b) \frac{1}{c}=a \cdot \frac{1}{c}+b \cdot \frac{1}{c}
$$

However,

Hence,

$$
a \cdot \frac{1}{c}+b \cdot \frac{1}{c}=\frac{a}{c}+\frac{b}{c}
$$

$$
\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}
$$

Finding the product of several numbers can be done by considering products of numbers taken just two at a time. For example, to find the product of x, y, and z, we
could first multiply x by y and then multiply that product by z; that is, we find $(x y) z$. Alternatively, we could multiply x by the product of y and z; that is, we find $x(y z)$. The associative property of multiplication guarantees that both results are identical, regardless of how the numbers are grouped. Thus, it is not ambiguous to write $x y z$. This concept can be extended to more than three numbers and applies equally well to addition.

Not only should you be able to manipulate real numbers, you should also be aware of, and familiar with, the terminology involved. It will help you read the book, follow your lectures, and - most importantly - allow you to frame your questions when you have difficulties.

The following list states important properties of real numbers that you should study thoroughly. Being able to manipulate real numbers is essential to your success in mathematics. A numerical example follows each property. All denominators are assumed to be different from zero (but for emphasis we have been explicit about these restrictions).

Property

1. $a-b=a+(-b)$
2. $a-(-b)=a+b$
3. $-a=(-1)(a)$
4. $a(b+c)=a b+a c$
5. $a(b-c)=a b-a c$
6. $-(a+b)=-a-b$
7. $-(a-b)=-a+b$
8. $-(-a)=a$
9. $a(0)=0$
10. $(-a)(b)=-(a b)=a(-b)$
11. $(-a)(-b)=a b$
12. $\frac{a}{1}=a$
13. $\frac{a}{b}=a\left(\frac{1}{b}\right) \quad$ for $b \neq 0$
14. $\frac{a}{-b}=-\frac{a}{b}=\frac{-a}{b} \quad$ for $b \neq 0$
15. $\frac{-a}{-b}=\frac{a}{b} \quad$ for $b \neq 0$
16. $\frac{0}{a}=0 \quad$ for $a \neq 0$
17. $\frac{a}{a}=1 \quad$ for $a \neq 0$
18. $a\left(\frac{b}{a}\right)=b \quad$ for $a \neq 0$
19. $a \cdot \frac{1}{a}=1 \quad$ for $a \neq 0$
20. $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \quad$ for $b, d \neq 0$
21. $\frac{a b}{c}=\left(\frac{a}{c}\right) b=a\left(\frac{b}{c}\right)$ for $c \neq 0$

Example(s)

$$
\begin{aligned}
& 2-7=2+(-7)=-5 \\
& 2-(-7)=2+7=9 \\
& -7=(-1)(7) \\
& 6(7+2)=6 \cdot 7+6 \cdot 2=54 \\
& 6(7-2)=6 \cdot 7-6 \cdot 2=30 \\
& -(7+2)=-7-2=-9 \\
& -(2-7)=-2+7=5 \\
& -(-2)=2 \\
& 2(0)=0 \\
& (-2)(7)=-(2 \cdot 7)=2(-7)=-14 \\
& (-2)(-7)=2 \cdot 7=14 \\
& \frac{7}{1}=7, \frac{-2}{1}=-2 \\
& \frac{2}{7}=2\left(\frac{1}{7}\right) \\
& \frac{2}{-7}=-\frac{2}{7}=\frac{-2}{7} \\
& \frac{-2}{-7}=\frac{2}{7} \\
& \frac{0}{7}=0 \\
& \frac{2}{2}=1, \frac{-5}{-5}=1 \\
& 2\left(\frac{7}{2}\right)=7 \\
& 2 \cdot \frac{1}{2}=1 \\
& \frac{2}{3} \cdot \frac{4}{5}=\frac{2 \cdot 4}{3 \cdot 5}=\frac{8}{15} \\
& \frac{2 \cdot 7}{3}=\frac{2}{3} \cdot 7=2 \cdot \frac{7}{3}
\end{aligned}
$$

Property

22. $\frac{a}{b c}=\frac{a}{b} \cdot \frac{1}{c}=\frac{1}{b} \cdot \frac{a}{c} \quad$ for $b, c \neq 0$
23. $\frac{a}{b}=\frac{a}{b} \cdot \frac{c}{c}=\frac{a c}{b c} \quad$ for $b, c \neq 0$
24. $\frac{a}{b(-c)}=\frac{a}{(-b) c}=\frac{-a}{b c}=$
$\frac{-a}{(-b)(-c)}=-\frac{a}{b c} \quad$ for $b, c \neq 0$
25. $\frac{a(-b)}{c}=\frac{(-a) b}{c}=\frac{a b}{-c}=$

$$
\frac{(-a)(-b)}{-c}=-\frac{a b}{c} \quad \text { for } c \neq 0
$$

26. $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c} \quad$ for $c \neq 0$
27. $\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c} \quad$ for $c \neq 0$
28. $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad$ for $b, d \neq 0$
29. $\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d} \quad$ for $b, d \neq 0$
30. $\frac{\frac{a}{c}}{\frac{c}{d}}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}$
for $b, c, d \neq 0$
31. $\frac{a}{\frac{b}{c}}=a \div \frac{b}{c}=a \cdot \frac{c}{b}=\frac{a c}{b}$ for $b, c \neq 0$
32. $\frac{\frac{a}{b}}{c}=\frac{a}{b} \div c=\frac{a}{b} \cdot \frac{1}{c}=\frac{a}{b c}$ for $b, c=0$

Example(s)

$\frac{2}{3 \cdot 7}=\frac{2}{3} \cdot \frac{1}{7}=\frac{1}{3} \cdot \frac{2}{7}$
$\frac{2}{7}=\left(\frac{2}{7}\right)\left(\frac{5}{5}\right)=\frac{2 \cdot 5}{7 \cdot 5}$
$\frac{2}{3(-5)}=\frac{2}{(-3)(5)}=\frac{-2}{3(5)}=$
$\frac{-2}{(-3)(-5)}=-\frac{2}{3(5)}=-\frac{2}{15}$
$\frac{2(-3)}{5}=\frac{(-2)(3)}{5}=\frac{2(3)}{-5}=$
$\frac{(-2)(-3)}{-5}=-\frac{2(3)}{5}=-\frac{6}{5}$
$\frac{2}{9}+\frac{3}{9}=\frac{2+3}{9}=\frac{5}{9}$
$\frac{2}{9}-\frac{3}{9}=\frac{2-3}{9}=\frac{-1}{9}$
$\frac{4}{5}+\frac{2}{3}=\frac{4 \cdot 3+5 \cdot 2}{5 \cdot 3}=\frac{22}{15}$
$\frac{4}{5}-\frac{2}{3}=\frac{4 \cdot 3-5 \cdot 2}{5 \cdot 3}=\frac{2}{15}$
$\frac{\frac{2}{3}}{\frac{3}{5}}=\frac{2}{3} \div \frac{7}{5}=\frac{2}{3} \cdot \frac{5}{7}=\frac{2 \cdot 5}{3 \cdot 7}=\frac{10}{21}$
$\frac{2}{\frac{3}{5}}=2 \div \frac{3}{5}=2 \cdot \frac{5}{3}=\frac{2 \cdot 5}{3}=\frac{10}{3}$
$\frac{\frac{2}{3}}{5}=\frac{2}{3} \div 5=\frac{2}{3} \cdot \frac{1}{5}=\frac{2}{3 \cdot 5}=\frac{2}{15}$

Property 23 is particularly important and could be called the fundamental principle of fractions. It states that multiplying or dividing both the numerator and denominator of a fraction by the same nonzero number results in a fraction that is equal to the original fraction. Thus,

$$
\frac{7}{\frac{1}{8}}=\frac{7 \cdot 8}{\frac{1}{8} \cdot 8}=\frac{56}{1}=56
$$

By Properties 28 and 23, we have

$$
\frac{2}{5}+\frac{4}{15}=\frac{2 \cdot 15+5 \cdot 4}{5 \cdot 15}=\frac{50}{75}=\frac{2 \cdot 25}{3 \cdot 25}=\frac{2}{3}
$$

We can also do this problem by converting $\frac{2}{5}$ and $\frac{4}{15}$ into fractions that have the same denominators and then using Property 26. The fractions $\frac{2}{5}$ and $\frac{4}{15}$ can be written with a common denominator of $5 \cdot 15$:

$$
\frac{2}{5}=\frac{2 \cdot 15}{5 \cdot 15} \quad \text { and } \quad \frac{4}{15}=\frac{4 \cdot 5}{15 \cdot 5}
$$

However, 15 is the least such common denominator and is called the least common denominator (LCD) of $\frac{2}{5}$ and $\frac{4}{15}$. Thus,

$$
\frac{2}{5}+\frac{4}{15}=\frac{2 \cdot 3}{5 \cdot 3}+\frac{4}{15}=\frac{6}{15}+\frac{4}{15}=\frac{6+4}{15}=\frac{10}{15}=\frac{2}{3}
$$

Similarly,

$$
\begin{aligned}
\frac{3}{8}-\frac{5}{12} & =\frac{3 \cdot 3}{8 \cdot 3}-\frac{5 \cdot 2}{12 \cdot 2} \quad \text { LCD }=24 \\
& =\frac{9}{24}-\frac{10}{24}=\frac{9-10}{24} \\
& =-\frac{1}{24}
\end{aligned}
$$

PROBLEMS 0.2

In Problems 1-10, determine the truth of each statement.

1. Every real number has a reciprocal.
2. The reciprocal of 6.6 is $0.151515 \ldots$.
3. The negative of 7 is $\frac{-1}{7}$.
4. $1(x \cdot y)=(1 \cdot x)(1 \cdot y)$
5. $-x+y=-y+x$
6. $(x+2)(4)=4 x+8$
7. $\frac{x+3}{5}=\frac{x}{5}+3$
8. $3\left(\frac{x}{4}\right)=\frac{3 x}{4}$
9. $2(x \cdot y)=(2 x) \cdot(2 y)$
10. $x(4 y)=4 x y$

In Problems 11-20, state which properties of the real numbers are being used.
11. $2(x+y)=2 x+2 y$
12. $(x+5.2)+0.7 y=x+(5.2+0.7 y)$
13. $2(3 y)=(2 \cdot 3) y$
14. $\frac{a}{b}=\frac{1}{b} \cdot a$
15. $5(b-a)=(a-b)(-5)$
16. $y+(x+y)=(y+x)+y$
17. $\frac{5 x-y}{7}=1 / 7(5 x-y)$
18. $5(4+7)=5(7+4)$
19. $(2+a) b=2 b+b a$
20. $(-1)(-3+4)=(-1)(-3)+(-1)(4)$

In Problems 21-27, show that the statements are true by using properties of the real numbers.
21. $2 x(y-7)=2 x y-14 x$
22. $\frac{x}{y} z=x \frac{z}{y}$
23. $(x+y)(2)=2 x+2 y$
24. $a(b+(c+d))=a((d+b)+c)$
25. $x((2 y+1)+3)=2 x y+4 x$
26. $(1+a)(b+c)=b+c+a b+a c$
27. Show that $(x-y+z) w=x w-y w+z w$.
$[$ Hint: $b+c+d=(b+c)+d$.
Simplify each of the following, if possible.
28. $-2+(-4)$
29. $-a+b$
30. $6+(-4)$
31. $7-2$
32. $\frac{3}{2^{-1}}$
33. $-5-(-13)$
34. $-(-a)+(-b)$
35. $(-2)(9)$
36. $7(-9)$
37. $(-1.6)(-0.5)$
38. $19(-1)$
39. $\frac{-1}{\frac{-1}{a}}$
40. $-(-6+x)$
41. $-7(x)$
42. $-3(a-b)$
43. $-(-6+(-y))$
44. $-3 \div 3 a$
45. $-9 \div(-27)$
46. $(-a) \div(-b)$
47. $3+\left(3^{-1} 9\right)$
48. $3(-2(3)+6(2))$
49. $(-a)(-b)(-1)$
50. $(-12)(-12)$
51. $X(1)$
52. $-71(x-2)$
53. $4(5+x)$
54. $-(x-y)$
55. $0(-x)$
56. $8\left(\frac{1}{11}\right)$
57. $\frac{X}{1}$
58. $\frac{14 x}{21 y}$
59. $\frac{2 x}{-2}$
60. $\frac{2}{3} \cdot \frac{1}{x}$
61. $\frac{a}{c}(3 b)$
62. $5 a+(7-5 a)$
63. $\frac{-a b y}{-a x}$
64. $\frac{a}{b} \cdot \frac{1}{c}$
65. $\frac{2}{x} \cdot \frac{5}{y}$
66. $\frac{1}{2}+\frac{1}{3}$
67. $\frac{x}{3 a}+\frac{y}{a}$
68. $\frac{3}{10}-\frac{7}{15}$
69. $\frac{a}{b}+\frac{c}{b}$
70. $\frac{X}{\sqrt{5}}-\frac{Y}{\sqrt{5}}$
71. $\frac{3}{2}-\frac{1}{4}+\frac{1}{6}$
72. $\frac{3}{7}-\frac{5}{9}$
73. $\frac{6}{x}$
74. $\frac{l}{m}$
75. $\frac{\frac{-x}{y^{2}}}{\frac{z}{x y}}$
76. $\frac{7}{0}$
77. $\frac{0}{X}$, for $X \neq 0$
78. $\frac{0}{0}$

Objective

To review positive integral exponents, the zero exponent, negative integral exponents, rational exponents, principal roots, radicals, and the procedure of rationalizing the denominator.

Some authors say that 0^{0} is not defined. However, $0^{0}=1$ is a consistent and often useful definition.

0.3 Exponents and Radicals

The product $x \cdot x \cdot x$ of $3 x$'s is abbreviated x^{3}. In general, for n a positive integer, x^{n} is the abbreviation for the product of $n x$'s. The letter n in x^{n} is called the exponent, and x is called the base. More specifically, if n is a positive integer, we have

1. $x^{n}=\underbrace{x \cdot x \cdot x \cdot \ldots \cdot x}_{n \text { factors }}$
2. $x^{-n}=\frac{1}{x^{n}}=\underbrace{\frac{1}{x \cdot x \cdot x \cdot \ldots \cdot x}}_{n \text { factors }}$ for $x \neq 0$
3. $x^{0}=1$

EXAMPLE 1 Exponents

a. $\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{16}$
b. $3^{-5}=\frac{1}{3^{5}}=\frac{1}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}=\frac{1}{243}$
c. $\frac{1}{3^{-5}}=3^{5}=243$
d. $2^{0}=1, \pi^{0}=1,(-5)^{0}=1$
e. $x^{1}=x$

Now Work Problem $5 \triangleleft$
If $r^{n}=x$, where n is a positive integer, then r is an nth root of x. Second roots, the case $n=2$, are called square roots; and third roots, the case $n=3$, are called cube roots. For example, $3^{2}=9$, so 3 is a square root of 9 . Since $(-3)^{2}=9,-3$ is also a square root of 9 . Similarly, -2 is a cube root of -8 , since $(-2)^{3}=-8$, while 5 is a fourth root of 625 since $5^{4}=625$.

Some numbers do not have an nth root that is a real number. For example, since the square of any real number is nonnegative: there is no real number that is a square root of -4 .

The principal nth root of x is the nth root of x that is positive if x is positive and is negative if x is negative and n is odd. We denote the principal nth root of x by $\sqrt[n]{x}$. Thus,

$$
\sqrt[n]{x} \text { is }\left\{\begin{array}{l}
\text { positive if } x \text { is positive } \\
\text { negative if } x \text { is negative and } n \text { is odd }
\end{array}\right.
$$

For example, $\sqrt[2]{9}=3, \sqrt[3]{-8}=-2$, and $\sqrt[3]{\frac{1}{27}}=\frac{1}{3}$. We define $\sqrt[n]{0}=0$.

Although both 2 and -2 are square roots of 4 , the principal square root of 4 is 2 , not -2 . Hence, $\sqrt{4}=2$. For positive x, we often write $\pm \sqrt{x}$ to indicate both square roots of x, and " $\pm \sqrt{4}= \pm 2$ " is a convenient short way of writing " $\sqrt{4}=2$ and $-\sqrt{4}=-2$ ", but the only value of $\sqrt{4}$ is 2 .

When computing $x^{m / n}$, it is often easier to first find $\sqrt[n]{x}$ and then raise the result to the m th power. Thus,

$$
(-27)^{4 / 3}=(\sqrt[3]{-27})^{4}=(-3)^{4}=81
$$

The symbol $\sqrt[n]{x}$ is called a radical. With principal square roots we usually write \sqrt{x} instead of $\sqrt[2]{x}$. Thus, $\sqrt{9}=3$.

If x is positive, the expression $x^{p / q}$, where p and q are integers with no common factors and q is positive, is defined to be $\sqrt[q]{x^{p}}$. Hence,

$$
\begin{array}{r}
x^{3 / 4}=\sqrt[4]{x^{3}} ; 8^{2 / 3}=\sqrt[3]{8^{2}}=\sqrt[3]{64}=4 \\
4^{-1 / 2}=\sqrt[2]{4^{-1}}=\sqrt{\frac{1}{4}}=\frac{1}{2}
\end{array}
$$

Here are the basic laws of exponents and radicals:

Law

1. $x^{m} \cdot x^{n}=x^{m+n}$
2. $x^{0}=1$
3. $x^{-n}=\frac{1}{x^{n}}$
4. $\frac{1}{x^{-n}}=x^{n}$
5. $\frac{x^{m}}{x^{n}}=x^{m-n}=\frac{1}{x^{n-m}}$
6. $\frac{x^{m}}{x^{m}}=1$
7. $\left(x^{m}\right)^{n}=x^{m n}$
8. $(x y)^{n}=x^{n} y^{n}$
9. $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
10. $\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}$
11. $x^{1 / n}=\sqrt[n]{x}$
12. $x^{-1 / n}=\frac{1}{x^{1 / n}}=\frac{1}{\sqrt[n]{x}}$
13. $\sqrt[n]{x} \sqrt[n]{y}=\sqrt[n]{x y}$
14. $\frac{\sqrt[n]{x}}{\sqrt[n]{y}}=\sqrt[n]{\frac{x}{y}}$
15. $\sqrt[m]{\sqrt[n]{x}}=\sqrt[m n]{x}$
16. $x^{m / n}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$
17. $(\sqrt[m]{x})^{m}=x$

Example(s)

$2^{3} \cdot 2^{5}=2^{8}=256 ; x^{2} \cdot x^{3}=x^{5}$
$2^{0}=1$
$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$
$\frac{1}{2^{-3}}=2^{3}=8 ; \frac{1}{x^{-5}}=x^{5}$
$\frac{2^{12}}{2^{8}}=2^{4}=16 ; \frac{x^{8}}{x^{12}}=\frac{1}{x^{4}}$
$\frac{2^{4}}{2^{4}}=1$
$\left(2^{3}\right)^{5}=2^{15} ;\left(x^{2}\right)^{3}=x^{6}$
$(2 \cdot 4)^{3}=2^{3} \cdot 4^{3}=8 \cdot 64=512$
$\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}$
$\left(\frac{3}{4}\right)^{-2}=\left(\frac{4}{3}\right)^{2}=\frac{16}{9}$
$3^{1 / 5}=\sqrt[5]{3}$
$4^{-1 / 2}=\frac{1}{4^{1 / 2}}=\frac{1}{\sqrt{4}}=\frac{1}{2}$
$\sqrt[3]{9} \sqrt[3]{2}=\sqrt[3]{18}$
$\frac{\sqrt[3]{90}}{\sqrt[3]{10}}=\sqrt[3]{\frac{90}{10}}=\sqrt[3]{9}$
$\sqrt[3]{\sqrt[4]{2}}=\sqrt[12]{2}$
$8^{2 / 3}=\sqrt[3]{8^{2}}=(\sqrt[3]{8})^{2}=2^{2}=4$
$(\sqrt[8]{7})^{8}=7$

EXAMPLE 2 Exponents and Radicals

a. By Law 1,

$$
\begin{gathered}
x^{6} x^{8}=x^{6+8}=x^{14} \\
a^{3} b^{2} a^{5} b=a^{3} a^{5} b^{2} b^{1}=a^{8} b^{3} \\
x^{11} x^{-5}=x^{11-5}=x^{6} \\
z^{2 / 5} z^{3 / 5}=z^{1}=z \\
x x^{1 / 2}=x^{1} x^{1 / 2}=x^{3 / 2}
\end{gathered}
$$

b. By Law 16,

$$
\begin{aligned}
& \left(\frac{1}{4}\right)^{3 / 2}=\left(\sqrt{\frac{1}{4}}\right)^{3}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8} \\
& \text { c. }\left(-\frac{8}{27}\right)^{4 / 3}=\left(\sqrt[3]{\frac{-8}{27}}\right)^{4}=\left(\frac{\sqrt[3]{-8}}{\sqrt[3]{27}}\right)^{4} \\
& =\left(\frac{-2}{3}\right)^{4} \\
& =\frac{(-2)^{4}}{3^{4}}=\frac{16}{81} \quad \text { Law } 9 \\
& \text { Laws } 16 \text { and } 14
\end{aligned}
$$

d. $\left(64 a^{3}\right)^{2 / 3}=64^{2 / 3}\left(a^{3}\right)^{2 / 3}$

Law 8

$$
\begin{array}{ll}
=(\sqrt[3]{64})^{2} a^{2} & \text { Laws } 16 \text { and } 7 \\
=(4)^{2} a^{2}=16 a^{2} &
\end{array}
$$

Now Work Problem $39 \triangleleft$

Rationalizing the denominator of a fraction is a procedure in which a fraction having a radical in its denominator is expressed as an equal fraction without a radical in its denominator. We use the fundamental principle of fractions, as Example 3 shows.

EXAMPLE 3 Rationalizing Denominators

a. $\frac{2}{\sqrt{5}}=\frac{2}{5^{1 / 2}}=\frac{2 \cdot 5^{1 / 2}}{5^{1 / 2} \cdot 5^{1 / 2}}=\frac{2 \cdot 5^{1 / 2}}{5^{1}}=\frac{2 \sqrt{5}}{5}$
b. $\frac{2}{\sqrt[6]{3 x^{5}}}=\frac{2}{\sqrt[6]{3} \cdot \sqrt[6]{x^{5}}}=\frac{2}{3^{1 / 6} x^{5 / 6}}=\frac{2 \cdot 3^{5 / 6} x^{1 / 6}}{3^{1 / 6} x^{5 / 6} \cdot 3^{5 / 6} x^{1 / 6}} \quad$ for $x \neq 0$

$$
=\frac{2\left(3^{5} x\right)^{1 / 6}}{3 x}=\frac{2 \sqrt[6]{3^{5} x}}{3 x}
$$

Now Work Problem $63 \triangleleft$

The following examples illustrate various applications of the laws of exponents and radicals. All denominators are understood to be nonzero.

EXAMPLE 4 Exponents

a. Eliminate negative exponents in $\frac{x^{-2} y^{3}}{z^{-2}} \quad$ for $x \neq 0, z \neq 0$.

Solution: $\quad \frac{x^{-2} y^{3}}{z^{-2}}=x^{-2} \cdot y^{3} \cdot \frac{1}{z^{-2}}=\frac{1}{x^{2}} \cdot y^{3} \cdot z^{2}=\frac{y^{3} z^{2}}{x^{2}}$
By comparing our answer with the original expression, we conclude that we can bring a factor of the numerator down to the denominator, and vice versa, by changing the sign of the exponent.
b. Simplify $\frac{x^{2} y^{7}}{x^{3} y^{5}} \quad$ for $x \neq 0, y \neq 0$.

Solution:

$$
\frac{x^{2} y^{7}}{x^{3} y^{5}}=\frac{y^{7-5}}{x^{3-2}}=\frac{y^{2}}{x}
$$

c. Simplify $\left(x^{5} y^{8}\right)^{5}$.

Solution:

$$
\left(x^{5} y^{8}\right)^{5}=\left(x^{5}\right)^{5}\left(y^{8}\right)^{5}=x^{25} y^{40}
$$

d. Simplify $\left(x^{5 / 9} y^{4 / 3}\right)^{18}$.

Solution: $\quad\left(x^{5 / 9} y^{4 / 3}\right)^{18}=\left(x^{5 / 9}\right)^{18}\left(y^{4 / 3}\right)^{18}=x^{10} y^{24}$
e. Simplify $\left(\frac{x^{1 / 5} y^{6 / 5}}{z^{2 / 5}}\right)^{5}$ for $z \neq 0$.

Solution: $\quad\left(\frac{x^{1 / 5} y^{6 / 5}}{z^{2 / 5}}\right)^{5}=\frac{\left(x^{1 / 5} y^{6 / 5}\right)^{5}}{\left(z^{2 / 5}\right)^{5}}=\frac{x y^{6}}{z^{2}}$
f. Simplify $\frac{x^{3}}{y^{2}} \div \frac{x^{6}}{y^{5}}$ for $x \neq 0, y \neq 0$.

Solution:

$$
\frac{x^{3}}{y^{2}} \div \frac{x^{6}}{y^{5}}=\frac{x^{3}}{y^{2}} \cdot \frac{y^{5}}{x^{6}}=\frac{y^{3}}{x^{3}}
$$

Now Work Problem $51 \triangleleft$

EXAMPLE 5 Exponents

a. For $x \neq 0$ and $y \neq 0$, eliminate negative exponents in $x^{-1}+y^{-1}$ and simplify.

Solution:

$$
x^{-1}+y^{-1}=\frac{1}{x}+\frac{1}{y}=\frac{y+x}{x y}
$$

b. Simplify $x^{3 / 2}-x^{1 / 2}$ by using the distributive law.

Solution:

$$
x^{3 / 2}-x^{1 / 2}=x^{1 / 2}(x-1)
$$

c. For $x \neq 0$, eliminate negative exponents in $7 x^{-2}+(7 x)^{-2}$.

$$
\text { Solution: } \quad 7 x^{-2}+(7 x)^{-2}=\frac{7}{x^{2}}+\frac{1}{(7 x)^{2}}=\frac{7}{x^{2}}+\frac{1}{49 x^{2}}=\frac{344}{49 x^{2}}
$$

d. For $x \neq 0$ and $y \neq 0$, eliminate negative exponents in $\left(x^{-1}-y^{-1}\right)^{-2}$.

$$
\text { Solution: } \quad \begin{aligned}
\left(x^{-1}-y^{-1}\right)^{-2} & =\left(\frac{1}{x}-\frac{1}{y}\right)^{-2}=\left(\frac{y-x}{x y}\right)^{-2} \\
& =\left(\frac{x y}{y-x}\right)^{2}=\frac{x^{2} y^{2}}{(y-x)^{2}}
\end{aligned}
$$

e. Apply the distributive law to $x^{2 / 5}\left(y^{1 / 2}+2 x^{6 / 5}\right)$.

Solution:

$$
x^{2 / 5}\left(y^{1 / 2}+2 x^{6 / 5}\right)=x^{2 / 5} y^{1 / 2}+2 x^{8 / 5}
$$

Now Work Problem $41 \triangleleft$

EXAMPLE 6 Radicals

a. Simplify $\sqrt[4]{48}$.

Solution:

$$
\sqrt[4]{48}=\sqrt[4]{16 \cdot 3}=\sqrt[4]{16} \sqrt[4]{3}=2 \sqrt[4]{3}
$$

b. Rewrite $\sqrt{2+5 x}$ without using a radical sign.

Solution:

$$
\sqrt{2+5 x}=(2+5 x)^{1 / 2}
$$

c. Rationalize the denominator of $\frac{\sqrt[5]{2}}{\sqrt[3]{6}}$ and simplify.

Solution: $\frac{\sqrt[5]{2}}{\sqrt[3]{6}}=\frac{2^{1 / 5} \cdot 6^{2 / 3}}{6^{1 / 3} \cdot 6^{2 / 3}}=\frac{2^{3 / 15} 6^{10 / 15}}{6}=\frac{\left(2^{3} 6^{10}\right)^{1 / 15}}{6}=\frac{\sqrt[15]{2^{3} 6^{10}}}{6}$
d. Simplify $\frac{\sqrt{20}}{\sqrt{5}}$.

Solution:

$$
\frac{\sqrt{20}}{\sqrt{5}}=\sqrt{\frac{20}{5}}=\sqrt{4}=2
$$

EXAMPLE 7 Radicals

a. Simplify $\sqrt[3]{x^{6} y^{4}}$.

Solution:

$$
\begin{aligned}
\sqrt[3]{x^{6} y^{4}} & =\sqrt[3]{\left(x^{2}\right)^{3} y^{3} y}=\sqrt[3]{\left(x^{2}\right)^{3}} \cdot \sqrt[3]{y^{3}} \cdot \sqrt[3]{y} \\
& =x^{2} y \sqrt[3]{y}
\end{aligned}
$$

b. Simplify $\sqrt{\frac{2}{7}}$.

Solution: $\quad \sqrt{\frac{2}{7}}=\sqrt{\frac{2 \cdot 7}{7 \cdot 7}}=\sqrt{\frac{14}{7^{2}}}=\frac{\sqrt{14}}{\sqrt{7^{2}}}=\frac{\sqrt{14}}{7}$
c. Simplify $\sqrt{250}-\sqrt{50}+15 \sqrt{2}$.

Solution: $\quad \sqrt{250}-\sqrt{50}+15 \sqrt{2}=\sqrt{25 \cdot 10}-\sqrt{25 \cdot 2}+15 \sqrt{2}$

$$
\begin{aligned}
& =5 \sqrt{10}-5 \sqrt{2}+15 \sqrt{2} \\
& =5 \sqrt{10}+10 \sqrt{2}
\end{aligned}
$$

d. If x is any real number, simplify $\sqrt{x^{2}}$.

Solution: $\quad \sqrt{x^{2}}=\left\{\begin{aligned} x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{aligned}\right.$
Thus, $\sqrt{2^{2}}=2$ and $\sqrt{(-3)^{2}}=-(-3)=3$.
Now Work Problem $75<$

PROBLEMS 0.3

In Problems 1-14, simplify and express all answers in terms of positive exponents.

1. $\left(2^{3}\right)\left(2^{2}\right)$
2. $x^{6} x^{9}$
3. $17^{5} \cdot 17^{2}$
4. $z^{3} z z^{2}$
5. $\frac{x^{3} x^{5}}{y^{9} y^{5}}$
6. $\left(x^{12}\right)^{4}$
7. $\frac{\left(a^{3}\right)^{7}}{\left(b^{4}\right)^{5}}$
8. $\left(\frac{13^{14}}{13}\right)^{2}$
9. $\left(2 x^{2} y^{3}\right)^{3}$
10. $\left(\frac{w^{2} s^{3}}{y^{2}}\right)^{2}$
11. $\frac{x^{9}}{x^{5}}$
12. $\left(\frac{2 a^{4}}{7 b^{5}}\right)^{6}$
13. $\frac{\left(y^{3}\right)^{4}}{\left(y^{2}\right)^{3} y^{2}}$
14. $\frac{\left(x^{2}\right)^{3}\left(x^{3}\right)^{2}}{\left(x^{3}\right)^{4}}$

In Problems 15-28, evaluate the expressions.
15. $\sqrt{25}$
16. $\sqrt[4]{81}$
17. $\sqrt[7]{-128}$
18. $\sqrt[5]{0.00243}$
19. $\sqrt[4]{\frac{1}{16}}$
20. $\sqrt[3]{-\frac{8}{27}}$
21. $(49)^{1 / 2}$
22. $(64)^{1 / 3}$
23. $81^{3 / 4}$
24. $(9)^{-5 / 2}$
25. $(32)^{-2 / 5}$
26. $(0.09)^{-1 / 2}$
27. $\left(\frac{1}{32}\right)^{4 / 5}$
28. $\left(-\frac{243}{1024}\right)^{2 / 5}$

In Problems 29-40, simplify the expressions.
29. $\sqrt{50}$
30. $\sqrt[3]{54}$
31. $\sqrt[3]{2 x^{3}}$
32. $\sqrt{4 x}$
33. $\sqrt{49 u^{8}}$
34. $\sqrt[4]{\frac{x}{16}}$
35. $2 \sqrt{8}-5 \sqrt{27}+\sqrt[3]{128}$
36. $\sqrt{\frac{3}{13}}$
37. $\left(9 z^{4}\right)^{1 / 2}$
38. $\left(729 x^{6}\right)^{3 / 2}$
39. $\left(\frac{27 t^{3}}{8}\right)^{2 / 3}$
40. $\left(\frac{256}{x^{12}}\right)^{-3 / 4}$

In Problems 41-52, write the expressions in terms of positive exponents only. Avoid all radicals in the final form. For example,
$y^{-1} \sqrt{x}=\frac{x^{1 / 2}}{y}$
41. $\frac{a^{5} b^{-3}}{c^{2}}$
42. $\sqrt[5]{x^{2} y^{3} z^{-10}}$
43. $3 a^{-1} b^{-2} c^{-3}$

